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Err 0.78× Err 1.0× Err 0.25×Figure 1: We visualize a slice of the solution to an elliptic PDE within a dragon-shaped boundary. Our hybrid solver can reduce
the error of the neural field baseline, while achieving lower variance compared to the Walk-on-Spheres [Sawhney et al. 2022]
method when working within the constraints of a limited computing budget

ABSTRACT
This paper presents amethod that uses neural networks as a caching

mechanism to reduce the variance of Monte Carlo Partial Differen-

tial Equation solvers, such as theWalk-on-Spheres algorithm [Sawh-

ney and Crane 2020]. While these Monte Carlo PDE solvers have

the merits of being unbiased and discretization-free, their high

variance often hinders real-time applications. On the other hand,

neural networks can approximate the PDE solution, and evaluat-

ing these networks at inference time can be very fast. However,

neural-network-based solutions may suffer from convergence diffi-

culties and high bias. Our hybrid system aims to combine these two

potentially complementary solutions by training a neural field to

approximate the PDE solution using supervision from a WoS solver.

This neural field is then used as a cache in the WoS solver to reduce

variance during inference. We demonstrate that our neural field

training procedure is better than the commonly used self-supervised

objectives in the literature. We also show that our hybrid solver

exhibits lower variance than WoS with the same computational

budget: it is significantly better for small compute budgets and
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provides smaller improvements for larger budgets, reaching the

same performance as WoS in the limit.
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1 INTRODUCTION
Solving elliptic PDEs is critical for various computer graphics ap-

plications, including 3D reconstruction, animation, and physics

simulation. Conventional PDE solvers, however, typically involve

time-consuming and error-prone discretization of space with finite

elements or meshes. Monte Carlo PDE solvers based on theWalk on

Spheres (WoS) algorithm [Sawhney and Crane 2020; Sawhney et al.

2023, 2022] offer a way to circumvent these issues by estimating so-

lution values without discretization. These solvers, however, suffer

from high variance, making them slow as they require numerous

samples to reduce the variance. This prevents their use in many

applications with limited computing budgets.

An alternative to both discretized and Monte Carlo solvers is to

use neural fields to approximate the solution to a PDE. Neural fields

are a class of neural networks that take spatial coordinates as input

and output values of a continuous field [Raissi et al. 2019; Xie et al.

2022]. Prior works have developed self-supervised losses that can

be used to optimize a neural field so that it satisfies a given PDE

https://doi.org/10.1145/3610548.3618141
https://doi.org/10.1145/3610548.3618141
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and boundary conditions [Raissi et al. 2019; Sitzmann et al. 2020].

Neural fields are typically compact, fast to evaluate, and expressive.

However, training neural fields with such self-supervised losses can

be unstable, and they tend to produce biased solutions. Since neural

field-based solvers are fast but biased and MC-based solvers are

unbiased but slow due to high variance, it is natural to ask whether

a hybrid solver that combines these two methods can be developed

to achieve controllable bias, low variance, and fast evaluation.

This paper takes the first step towards building a hybrid solver

combining neural fieldswithWoS approaches for variable-coefficient

elliptic PDEs. Inspired by previous work [Müller et al. 2021] that

deploys neural radiance fields as a cache to accelerate Monte Carlo

rendering, we hypothesize that a neural field cache can also be

used to reduce the variance of a Monte Carlo PDE solver. Adapting

this idea, we have developed a novel hybrid PDE solver that first

trains a neural field, then uses it to decrease the cost and variance

of evaluating the solution. In the training phase, we optimize the

neural field supervised by unbiased solution estimates from the

WoS algorithm. Then to evaluate the solution, we run WoS but

terminate its random walks at a prescribed depth by querying the

neural field, providing solution estimates that are more accurate

than the neural field alone and faster and less noisy thanWoS alone.

To transfer the success of Müller et al. [2021] to reduce the vari-

ance of Monte Carlo PDE solvers, we identify the necessary change

of neural network architecture and modification of the training

procedure. We provide a theoretical analysis showing that our loss

retains comparable convergence guarantees to conventional SGD

algorithms. In practical testing, we find that our neural field has a

lower average error than the unbiased but noisy one-sample WoS

estimator, and as the number of samples increases, our hybrid solver

produces a lower error when the depth limit is set appropriately.

2 RELATEDWORK
This paper draws inspiration from the existing literature on Monte

Carlo PDE solvers and PDE solvers with neural networks.

Monte Carlo PDE Solvers. The idea of using the Monte Carlo

method to solve PDEs can date back to Courant et al. [1967] and

Forsythe and Leibler [1950]. The Walk on Spheres (WoS) algorithm,

initially proposed by Muller [1956], estimates the solution of a PDE

by simulating a random walk from which boundary and source

contributions are accumulated. Sawhney and Crane [2020] further

applied the WoS algorithm in geometry processing tasks. After

this seminal work, a number of projects have extended WoS to al-

low variable coefficients [Sawhney et al. 2022], Neuman boundary

conditions [Sawhney et al. 2023], PDE parameter inversion [Yıl-

mazer et al. 2022], and different applications such as fluid simula-

tion [Rioux-Lavoie et al. 2022]. Although these works extend Monte

Carlo methods to a broader range of PDEs, they are still limited

by shortcomings, such as the high variance and expensive compu-

tations, of Monte Carlo estimators. To tackle these, the computer

graphics community has also developed methods such as bound-

ary caching [Bakbouk and Peers 2023; Miller et al. 2023; Müller

et al. 2021], importance sampling [Müller et al. 2017, 2019; Veach

and Guibas 1995], and denoising [Chaitanya et al. 2017; Gharbi

et al. 2019]. Some of these techniques have been applied in WoS

solvers [Qi et al. 2022; Sawhney et al. 2022]. In this paper, we pro-

pose an alternative method to mitigate the shortcomings of Monte

Carlo PDE solvers by incorporating neural networks. Similar ideas

have been applied in path tracing and radiosity [Hadadan et al. 2021;

Müller et al. 2019, 2020, 2021; Ren et al. 2013], and we draw inspira-

tion from these applications. Of particular relevance to this paper is

[Müller et al. 2021], which trains a neural radiance field to be used

as a cache for real-time Monte Carlo rendering. Applying this idea

to Walk-on-Spheres PDE solvers, however, is nontrivial and can

pose new challenges. We identify the correct network architectures

and training procedures to address such domain differences and

provide theoretical analysis for convergence rates.

Neural Fields. Recently, neural fields have been shown to be a

unique signal representation tool with the advantages of allowing

high fidelity reconstruction [Mildenhall et al. 2020; Müller et al.

2022; Sitzmann et al. 2020; Tancik et al. 2020], enabling sampling at

arbitrary locations , and providing fast training and inference [Chan

et al. 2022; Chen et al. 2022b; Fridovich-Keil et al. 2022; Müller et al.

2022]. Most applications of neural fields have focused on image

compression [Martel et al. 2021], view synthesis [Barron et al. 2021;

Liu et al. 2020; Mildenhall et al. 2020; Verbin et al. 2021], 3D recon-

struction [Mescheder et al. 2019; Park et al. 2019; Peng et al. 2020;

Wang et al. 2021] and generation [Cai et al. 2020; Chen et al. 2020;

Chen and Zhang 2019; Mescheder et al. 2019; Park et al. 2019; Yang

et al. 2019]. Recently, Sitzmann et al. [2020] showed that neural

fields with an appropriate architecture can be used to solve PDEs.

Yang et al. [2021a] leveraged this idea and applied these neural field

solvers to geometry processing tasks. Other researchers have suc-

cessfully applied neural fields in character animation [Bergman et al.

2022; Noguchi et al. 2021], applications of level-set methods [Mehta

et al. 2022], and solving time-dependent PDEs [Chen et al. 2022a].

Most of these existing methods aim to produce a network that

deterministically approximates the physical field of interest, and

accuracy can only be improved with additional training supervision.

In contrast, we combine a neural field inside a WoS solver, so that it

can produce better results when given more compute at test time.

Other Deep Learning-based PDE solvers. Another class of neural
network-based PDE solvers is commonly known as neural opera-

tors [Li et al. 2020, 2021], which has shown success in many applica-

tions [Liu et al. 2022; Pathak et al. 2022; Trifan et al. 2021; Yang et al.

2021b]. A neural operator will train a neural network to predict

how to evolve a physical system, learning from prior data gener-

ated from the simulation. Unlike neural operators, we will focus

on learning a representation for the PDE solution. Improving our

method to use data drive priors is an exciting direction, but it’s out-

of-the-scope for our discussion. Most closely related to the neural

field PDE solver is a class of solvers called Physics-informed neural

networks (PINNs) [Raissi et al. 2019], which has been applied in

many PDE applications, including turbulence [Hennigh et al. 2021],

elasticity [Rao et al. 2021], and topological optimization [Zehnder

et al. 2021]. PINNs aim to train a neural network to approximate

the PDE solution via a self-supervised loss derived from the PDE

constraint and boundary conditions. We instead propose an alter-

native way to train neural fields as a representation of the PDE

solution using labels provided by the WoS estimator, which works

well in the class of PDE that the WoS estimator can be applied to.
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3 BACKGROUND
Our work builds on two bodies of literature: Monte Carlo PDE

solvers and neural-field PDE solvers.

3.1 Steady State Elliptic PDEs
Elliptic equations are a general class of PDEs that are important

for various computer vision and graphics applications including

(screened) Poisson surface reconstruction [Kazhdan et al. 2006;

Kazhdan and Hoppe 2013] and fluid simulation [Rioux-Lavoie et al.

2022; Stam 1999]. In this paper, we are interested in obtaining the

steady-state solution of an elliptic PDE.

Let Ω ⊂ R𝑑 denote the domain and 𝜕Ω be the boundary of this

domain. ∇𝑓 denotes the gradient of 𝑓 and ∇· is the divergence

operator ∇ · v(𝑥) = ∑
𝑖 𝜕v(𝑥)𝑖/𝜕𝑥𝑖 . The class of Elliptic equations

we consider in this paper can be expressed in the following form:

∇ · (𝛼 (𝑥)∇𝑢 (𝑥)) + ®𝜔 (𝑥)∇𝑢 (𝑥) − 𝜎 (𝑥)𝑢 (𝑥) = −𝑓 (𝑥) 𝑥 ∈ Ω

𝑢 (𝑥) = 𝑔(𝑥) 𝑥 ∈ 𝜕Ω, (1)

where 𝛼 : R𝑑 → R, ®𝜔 : R𝑑 → R𝑑 and 𝜎 : R𝑑 → R are spatially

varying coefficients. 𝑓 : R𝑑 → R denotes the source term, and

𝑔 : R𝑑 → R is the boundary condition. We will introduce two

different ways to solve elliptic PDEs without discretization.

3.2 Monte Carlo PDE Solvers
The general idea of Monte Carlo PDE solvers is to express the

solution of a PDE in the form of a recursive integral equation, and

then define aMonte Carlo estimator for the integral equation.While

our method can potentially be applied to other types of Monte Carlo

PDE solvers, this paper focuses on PDEs in the form of Equation 1.

This PDE can be solved as an integral equation of the form:

𝑢 (𝑥) = 𝑆 (𝑥) +
∫
𝐵𝑟 (𝑥 )

𝑢 (𝑦)𝐺𝑥 (𝑦)𝑑𝑦 +
∫
𝜕𝐵𝑟 (𝑥 )

𝑢 (𝑧)𝐾𝑥 (𝑧)𝑑𝑧, (2)

where 𝑆 ,𝐺𝑥 , and 𝐾𝑥 , which are functions depending on 𝛼 (𝑥), 𝜎 (𝑥),
and 𝑓 (𝑥). 𝐵𝑟 (𝑥) is a ball centered at 𝑥 with radius 𝑟 : {𝑦 | ∥𝑥 − 𝑦∥ <
𝑟 }, and 𝜕𝐵(𝑥) is the sphere: {𝑦 | ∥𝑥 − 𝑦∥ = 𝑟 }. Specifically,

𝑆 (𝑥) =
∫
𝐵 (𝑥 )

𝑓 (𝑦)𝐺�̄� (𝑥,𝑦)√︁
𝛼 (𝑥)𝛼 (𝑦)

𝑑𝑦, 𝐾𝑥 (𝑧) =
√︁
𝛼 (𝑧)𝑃 �̄� (𝑥, 𝑧) (3)

𝐺𝑥 (𝑦) =
√︁
𝛼 (𝑦)/𝛼 (𝑥) (𝜎 − 𝜎′ (𝑦))𝐺�̄� (𝑥,𝑦) (4)

where 𝜎 = max(𝜎′ (𝑥)) − min(𝜎′ (𝑥)). 𝐺�̄� is the Green’s function

and 𝑃 �̄� is the Poisson kernel. A more detailed definition of these

functions is provided by Sawhney et al. [2022].

Sawhney et al. [2022] provided the following Monte Carlo esti-

mator for Equation 2, that uses delta-tracking [Coleman 1968; Raab

et al. 2008] to avoid exponential number of walks:

𝑢 (𝑥) =


𝑔(𝑥) if 𝑑 (𝑥) < 𝜖
(𝑆𝑥 (𝑦𝑖 ) +𝐺𝑥 (𝑦𝑖 )𝑢 (𝑦𝑖 ))𝑃𝑁 (𝑥)−1

w. prob. 𝑃𝑁 (𝑥)
(𝑆𝑥 (𝑦𝑖 ) + 𝐾𝑥 (𝑧𝑖 )𝑢 (𝑧𝑖 )) (1 − 𝑃𝑁 (𝑥))−1

otherwise

(5)

In this solver, 𝑆 is a single sample Monte-Carlo estimator for the

source contribution 𝑆 , 𝑦𝑖 is sampled from 𝐵𝑑 (𝑥 ) (𝑥), and 𝑧𝑖 are sam-

pled from 𝜕𝐵𝑑 (𝑥 ) (𝑥). The function 𝑑 (𝑥) = min𝑦∈𝜕Ω ∥𝑦 − 𝑥 ∥ is the
minimum distance of 𝑥 to the boundary, 𝑥 = arg min𝑦∈𝜕Ω ∥𝑦 − 𝑥 ∥

is the nearest projection of 𝑥 the boundary, and 𝜖 defines a band

around the boundary where walks will be terminated. When the

first branch is not evaluated, the second branch will be evaluated

with probability 𝑃𝑁 (𝑥). The third branch will be evaluated if nei-

ther the first and the second is evaluated. Please refer to Sawhney

et al. [2022] for definitions of 𝑆 and 𝑃𝑁 .

Limitations. While these Monte Carlo solvers are guaranteed

to be unbiased, they experience very high variance due to the

large space they need to integrate, so one needs to sample many

independent walks to achieve good results. Moreover, each walk

can be expensive, since the walk presented in Equation 5 can take

hundreds of steps to reach the boundary. As a result, these solvers

usually require additional variance reduction techniques.

3.3 PDE solvers using Neural Fields
A neural field is a neural network that takes the coordinates of

an 𝑚-dimensional spatial point ®𝑥 and outputs a field value: 𝑢𝜃 :

R𝑛 → R𝑚 [Xie et al. 2022]. If 𝑢𝜃 is constructed to be smooth

and continuous, then the spatial gradients such as 𝜕𝑢𝜃 /𝜕𝑥𝑖 can be

obtained via automatic differentiation. These properties have been

leveraged by prior works to apply neural fields to solve PDEs [Chen

et al. 2022a; Raissi et al. 2019; Sitzmann et al. 2020] and to perform

geometry processing [Mehta et al. 2022; Yang et al. 2021a]. For the

PDE in Equation 1, we can define the following training objectives:

P(𝜃, 𝑥) = ∥(𝑢𝜃 − ∇ · (𝛼∇𝑢𝜃 ) − ®𝜔∇𝑢𝜃 + 𝜎𝑢𝜃 + 𝑓 ) (𝑥)∥2
(6)

B(𝜃, 𝑥) = ∥(𝑢𝜃 − 𝑔) (𝑥)∥2
(7)

The loss P is trying to enforce the PDE condition, and the loss B is

trying enforce the boundary condition. Solving Equation 1 can be

formulated as an optimization problem [Raissi et al. 2019; Sitzmann

et al. 2020; Yang et al. 2021a]

arg min

𝜃

∫
Ω
P (𝜃, 𝑥) d𝑥 + 𝜆

∫
𝜕Ω

B (𝜃, 𝑥) d𝑥, (8)

where 𝜆 is a hyperparameter that balances the PDE constraints and

boundary constraints.

Network architectures. The network architecture is chosen to

strike a good balance between expressiveness and regularization

to obtain good performance. A popular choice is a multi-layer per-

ceptron (MLP) with sinusoidal activations [Sitzmann et al. 2020]

or Fourier positional encoding [Lindell et al. 2022; Tancik et al.

2020; Yang et al. 2022; Zhang et al. 2020]. These MLPs are very

compact to store, yet they can be slow to train and expensive

to evaluate. Another class of of neural field architecture modu-

lates an MLP with interpolated spatial features [Müller et al. 2022]:

𝑢𝜃 (𝑥) = 𝑓𝜃𝑛+1
(𝑔(interp(𝑥, 𝜃1), . . . , interp(𝑥, 𝜃𝑛)), where interp is

bi-linear interpolation, 𝑔(𝑣1, . . . , 𝑣𝑛) is an aggregation operation,

and 𝑓𝜃 is a small MLP. These neural fields with spatially modu-

lated features are usually fast to converge, but they are harder to

regularize to produce a good solution when supervision is limited.

Limitations. Once successfully trained, these neural fields can

produce an approximate solution to the PDE very efficiently since

only a forward pass is required to evaluate the field. However, train-

ing such neural fields using a self-supervised loss can be difficult.
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In order for the training to converge, one needs to choose appro-

priate network architectures, initialization, as well as the learning

rate schedule. For example, using a network with piecewise linear

activation will not work since the Laplacian of the network will be

zero [Lei and Jia 2020], even though the network is still a universal

approximator. Also, the residual error between the neural field and

the exact solution depends on the architecture, the training pro-

cedures, and the characteristics of the PDE, making it difficult to

control the amount of bias in a neural field solution.

4 METHOD OVERVIEW
On one hand, the WoS method is slow at inference time due to high

variance, but it has no bias. On the other hand, the neural field is

comparatively fast at inference time since it produces deterministic

output without variance, but it suffers from non-zero bias. Inspired

by these complementary properties, we want to build a hybrid

solver where we can reduce the inference time for WoS by querying

the neural field after a fixed compute budget.

We achieve this hybrid solver in two steps. First, we need to

build a mechanism to reliably train neural field solutions. Instead of

using the self-supervised loss, we proposed to use a WoS estimator

to provide target data to supervise the neural field to approximate

the PDE solution (Section 5). Once we obtain a neural field with a

small enough error, we use a hybrid WoS solver that terminates the

recursive call in Equation 5 by querying the neural field (Section 6).

Intuitively, this hybrid solver can lower the error of the neural

field solution since it performs WoS-style random walks that can

terminate at the boundary. At the same time, it can achieve lower

variance than the WoS estimator since it conducts shorter walks,

thus exploring a smaller sample space.

5 TRAINING A NEURAL FIELD SOLUTION
To build a hybrid solver, we first need to obtain a neural field that

approximates the solution of the PDE in Equation 1. Specifically,

the network 𝑢𝜃 will take a 2D or 3D spatial coordinate 𝑥 as input

and output a real number to approximate the ground truth 𝑢 (𝑥).
One way to achieve this is to directly use a self-supervised loss

like the one in Equation 8. Training with this type of loss can be un-

stable and often requires extensive hyper-parameter tuning. For ex-

ample, Figure 3 shows that for the self-supervised loss, performance

is sensitive to hyper-parameters such as network architecture.

One potential reason for such instability is the higher-order

differential operator used in the self-supervised loss. If neural fields

need to be expressive enough to approximate arbitrary solutions,

the network needs to contain high-frequency components. The

derivative operators will further amplify the contribution of these

high-frequency components. As a result, the self-supervised loss

can be high-frequency, making it difficult to optimize.

In this paper, we circumvent this issue by proposing loss func-

tions that do not require evaluating gradients of the network. The

key idea is that the WoS estimator provides statistical estimates

of the exact solution to the PDE, and these estimates can be used

as targets to train the neural networks. We will demonstrate the

derivation of the WoS-supervision loss in Section 5.1, analyze its

convergence properties in Section 5.2.

5.1 WoS Supervision Loss
Oneway to supervise the neural field solutionwithout taking spatial

derivatives is to use the MC estimator to create supervision targets

to optimize the neural network. The straightforward way to achieve

this is first running theMonte-Carlo estimator for enough iterations

to accurately estimate the PDE solution for a fixed set of spatial

locations {𝑥𝑖 ∈ Ω}𝑛
𝑖=1

. Then we can use SGD to optimize the L2

objectives between the network’s output and the estimated target:

L(𝜃 ) = 1

𝑛

𝑛∑︁
𝑖=1

©«𝑢𝜃 (𝑥𝑖 ) − 1

𝑁

𝑁∑︁
𝑗=1

𝑢 (𝑥𝑖 )ª®¬
2

, (9)

where 𝑢 is an unbiased Monte Carlo estimator for the PDE solution

so E [𝑢] = 𝑢 in Ω. Computing this target can take a substantial

amount of time since it requires running 𝑁 independent walks for

each training location 𝑥𝑖 .

Intuitively, we need not wait to start training until the super-

vision signal is very accurate, since SGD-based neural network

training can tolerate noisy gradients. This suggests that we can

run the data acquisition process and the neural network training

process in parallel, similar to Müller et al. [2021].

To achieve this, we first create a running estimate 𝑦𝑖 of the PDE

solution at each location 𝑥𝑖 target using the WoS estimator 𝑢:

𝑦
(𝑘+1)
𝑖

= (𝑘𝑦 (𝑘 )
𝑖

+ 𝑢 (𝑥𝑖 ))/(𝑘 + 1), (10)

where 𝑘 denotes the number of accumulation steps. The training

loss at step 𝑡 is simply the L2 loss between the network prediction

and the accumulated sample average:

L𝑡 (𝜃 ) =
1

𝑛

𝑛∑︁
𝑖=1

𝑢𝜃 (𝑥𝑖 ) − 𝑦 (𝑡 )𝑖

2

. (11)

By using a loss defined in this way with a target value 𝑦
(𝑡 )
𝑖

that

improves in accuracy as training progresses, we are able to run

the sample generation in parallel with training and also converge

provably to low-noise results.

5.2 Convergence analysis
Intuitively, when training a neural field using stochastic gradient

descent (SGD) with the loss function in Equation 11, the variance

of the target from the Monte-Carlo estimator will be added to the

variance created by SGD. As long as this estimator is unbiased, SGD

can converge to a region with small gradients.

Theorem 5.1. Let 𝑢 be the solution of the PDE of interest, and 𝑢
be an unbiased WoS estimator for the solution with bounded variance:
E [𝑢] = 𝑢 and V [𝑢] < 𝐶 . Let 𝑢𝜃 be the neural field to be optimized.
Define the final objective to be L𝑖 (𝜃,𝑦) = (𝑢𝜃 (𝑥𝑖 ) − 𝑦𝑖 )2. Further,

assume that ∥∇𝜃𝑢𝜃 (𝑥)∥ ≤ 𝐹 ,
𝑣𝑇 (

∇2

𝜃
L
)
𝑣

 ≤ 𝐿 ∥𝑣 ∥ for all 𝑣 , and
∥∇𝜃L𝑖 (𝜃,𝑢)∥ ≤ 𝐺 . If we run the following SGD optimization for 𝑇
steps: 𝜃𝑡+1 = 𝜃𝑡 − 𝛼∇𝜃L(𝜃,𝑦 (𝑡 )

𝑖
), where 𝑦 (𝑡+1)

𝑖
is obtained through

Equation 10, then the expected gradient norm will converge at the
following rate:

E [∇𝜃L(𝜃𝜏 )] ≤
L(𝜃0) − L(𝜃∗)

𝑇𝛼
+ 𝐿𝐶𝐹

2

2

log(𝑇 )
𝑇

+ 𝐿𝐺
2𝛼

2

, (12)

where 𝜏 is a random variable on [0, . . . ,𝑇 − 1] indicating which step
to stop, 𝑃 (𝜏 = 𝑡) = 1/𝑇 ,𝑇 is the maximum number of SGD steps, and
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Figure 2: Illustration of our training and testing pipeline. We first use the WoS algorithm to generate target data for training a
neural field approximation of the PDE solution. Once the neural field is trained, it will be used as cache in the hybrid solver,
enabling the random walks to terminate early.

Reference iNGP-Self Siren-Self

iNGP-WoS Siren-WoS

Figure 3: Result of training Neural Fields with the self-
supervised loss and with WoS supervision. Here we train
two different neural field architectures, SIREN and iNGP,
using each of these losses. Swapping from SIREN to iNGP
causes catastrophic failure when using self-supervision. Our
loss produces good results for both architectures.

L(𝜃𝑡 ) is the averaged loss over different sampling locations at time
𝑡 : 1

𝑁

∑𝑁
𝑖=1

L𝑖 (𝜃,𝑦 (𝑡 )𝑖
). The expectation is taken over stopping time 𝜏 ,

randomly generated target 𝑦 (𝑡 )
𝑖

, and optimization trajectory 𝜃1,...,𝑇 .

The proof is provided in the supplementary. This theorem sug-

gests that supervising SGD with signals created from an unbiased

WoS estimator will converge to a noise ball of size 𝐿𝐺2𝛼/2, which

is the same as SGD algorithms. The convergence rate is under-

standably slower (i.e.𝑂 (𝑙𝑜𝑔(𝑇 )/𝑇 )) compared to SGD training with

variance-free labels (i.e. 𝑂 (1/𝑇 )). This is because additional steps
are required to average out the variance introduced by 𝑦𝑡

𝑖
.

Note that Theorem 5.1 only shows the most basic convergence

analysis for constant learning rate SGD with labels created by

WoS estimators. This convergence rate can be easily improved by

standard techniques such as reducing the learning rate, adding

momentum, or reducing the variance of the MC samples.

1 def train(net, WoS, domain, n_points):
2 x = WoS.domain_sample(n_points) # Initialize dataset
3 data = {x_i: (0, 0) for x_i in x}
4 for i in range(max_training_iters):
5 xi, yi, ci = sample_batch(data) # Sample a batch.
6 y_new = WoS(xi) # Obtain new MC estimate
7 yi = (yi * ci + y_new) / (ci + 1) # Estimate new label.
8 loss = ((net(xi) - yi)**2).mean() # Compute loss.
9 net = Adam(net, lr(t), loss.grad()) # SGD updates.
10 data[xi] = (yi, ci + 1) # Dataset update.
11 return net

Listing 1: Training algorithm (Sec 5).

6 WALK-ON-SPHERES WITH NEURAL CACHE
Now we have a Monte Carlo solver 𝑢 and a neural field 𝑢𝜃 (𝑥) ap-
proximating the solution. How do we construct a hybrid solver

with lower variance than the Monte Carlo solver but can also

have controllable bias like the Monte Carlo solver? We propose to

achieve this is by replacing the recursive call in the Monte Carlo

solver of Equation 5 with neural network inference after a certain

depth.Specifically, we define a hybrid solver in the following form:

𝑢𝐻 (𝑥,𝑚) =



𝑔(𝑥) if 𝑑 (𝑥) < 𝜖
𝑢𝜃 (𝑥) if𝑚 = 0

𝑆𝑥 (𝑦)+𝐺𝑥 (𝑦)�̂�𝐻 (𝑦,𝑚−1)
𝑃𝑁 (𝑥 ) w. prob. 𝑃𝑁 (𝑥)

𝑆𝑥 (𝑦)+𝐾𝑥 (𝑧 )�̂�𝐻 (𝑧,𝑚−1)
1−𝑃𝑁 (𝑥 ) otherwise

, (13)

where 𝑦 ∼ 𝐵𝑑 (𝑥 ) (𝑥), 𝑧 ∼ 𝜕𝐵𝑟 (𝑥), and 𝑥 is a projection of 𝑥 to the

closest point on the boundary: 𝑥 = arg min𝑦∈𝜕Ω ∥𝑥 − 𝑦∥.
The idea of this solver is to run a random walk following the

WoS algorithm, but keeping track of the number of steps, which is

the key indicator of computational cost. The walk can terminate

in two ways. If the walk reaches the boundary, then the solver

returns the boundary condition 𝑔 as in standard WoS. If the walk

doesn’t reach the boundary within the budgeted number of steps

𝑚, it queries the approximate solution from the neural field 𝑢𝜃 .

This hybrid solver generalizes both the neural field and the WoS

estimator, and the parameter𝑚 lets us explore the trade-off between

bias (from the neural field) and variance (from the Monte Carlo

estimator). When calling 𝑢 with𝑚 = 0, it simply returns the neural

field value; there is no variance, but the bias is the approximation

error of the neural field. When setting𝑚 = ∞, it computes exactly

the WoS estimator, which has no bias but can have substantial

variance. For intermediate values of 𝑚, the hybrid method can

achieve lower bias than the NF alone and lower variance than the

WoS estimator. This is supported by experiment results in Sec 7.4.

When dealing with low computation budgets, the parameter𝑚

can be assigned a low value or even set to zero, resulting in fast

evaluation with minimal or no variance. Whenmore computation is

available,𝑚 can be set higher to decrease bias. But each sample can

create walks with up to𝑚 steps, which results in higher variance

(due to the large sample space caused by longer walks). As a result,

as the depth increases, the hybrid solver will require more samples,
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thus increasing the computational cost. However, in Section 7.4, we

show that the hybrid estimator can achieve lower overall error in

practice for most ranges of accuracy.

1 def test(net, WoS, x, m):
2 dist, x_proj = WoS.domain.nn_query(x)
3 if dist < eps: return WoS.boundary(x_proj)
4 if m == 0: return net(x)
5 y, z = WoS.sample_walk(x)
6 source = WoS.compute_source(x, y)
7 if WoS.is_null(x):
8 x_next, coef = y, WoS.compute_null_coef(x, y)
9 else:
10 x_next, coef = z, WoS.compute_non_null_coef(x, z)
11 return test(net, WoS, x_next, m - 1) * coef + source

Listing 2: Hybrid solver inference (Sec 6).

7 RESULTS
This section will first compare the proposed hybrid solver and two

baselines: pure WoS and pure neural field solutions trained with

self-supervised loss. We first show equal-time comparisons on a

3D elliptic equation with spatially varying coefficients (Sec 7.1).

We then provide an analysis under the same number of samples

(Sec 7.3). Finally, we demonstrate how the depth hyperparameter of

our hybrid solver allows users to trade off compute for bias (Sec 7.4).

7.1 Experiment Setup
In this section, we apply our solvers and the baseline solvers to the

PDE in Equation 1 without a drifting term:

∇ · (𝛼 (𝑥)∇𝑢 (𝑥)) − 𝜎 (𝑥)𝑢 (𝑥) = −𝑓 (𝑥) 𝑥 ∈ Ω

𝑢 (𝑥) = 𝑔(𝑥) 𝑥 ∈ 𝜕Ω. (14)

This experiment section will focus on variable coefficient PDEs.

Please refer to the supplementary for the results of combining our

methods with constant coefficient WoS algorithms.

Domain representation. The domain Ω is defined by a signed

distance function (SDF). In this experiment, we represent the do-

main SDF by training a neural field in instant-NGP [Müller et al.

2022; Park et al. 2019; Sitzmann et al. 2020]. We follow the training

procedure of Müller et al. [2022] except that 1) we do not deploy

hashing to compress the storage, and 2) we use multi-resolution

grids with only four layers with following resolutions: 128, 64, 32,

and 16. Our model takes about 20 minutes to finish training and

contains 4MB parameters.

Diffusion, absorption, forcing, and boundary functions. Following
Sawhney et al. [2022], we use smooth periodic patterns to generate

the spatially varying diffusion, absorption, forcing, and boundary

functions. Please refer to the released code for more details.

Baselines. Our baselines for comparison are (1) Walk-on-spheres

solver (WoS) and (2) neural fields trained with self-supervised tech-

niques (NF). For the WoS baseline, we follow the released C++ im-

plementation of Sawhney et al. [2022]. We used the Delta Tracking

algorithm, with importance sampling on the off-centered Green’s

function but didn’t apply the next-flight variant. This WoS solver

is also used as the basis for the hybrid solver. For the NF base-

line, we implement the self-supervised loss as shown in Equation 8.

This neural field baseline is trained for 2 × 10
4
iterations, with the

best hyper-parameter obtained Ray-tune [Liaw et al. 2018] random

search. The training of this baseline takes about 5 minutes to finish.

Reference solution. We use the unbiased WoS estimators to pro-

duce the reference solution. Specifically, for each geometry, we

choose a slice of interest (i.e. the 𝑧 = 0 plane). At that plane, we

densely sample an image with resolution 512 × 512 unless other-

wise noted. We average 10
4
WoS samples for each of these pixels to

create the reference value. For pixels that are outside the domain,

we set the reference to 0.

Hyperparameters for hybrid solvers. To obtain the neural field ap-

proximation using the method proposed in Section 5, we uniformly

sample 20000 points inside the domain via rejection sampling. For

each of these points, we run WoS algorithm with 50 walks to obtain

the initial training label 𝑦 (0) . Then we start the training procedure

for 20000 iterations using Adam optimizer. For every 5000 iterations,

we sample another batch of data from WoS with 50 walks. We do

not interrupt the training until the next batch of data accumulation

of 50 walks is ready. To compute WoS for 50 independent walks for

all data points takes about 40 seconds, during which we can run

about 8000 training iterations. This allow us to update the training

data at every 5000 iterations without waiting. We use SIREN with

512 hidden dimensions and 2 hidden layers. The training is done

in NVIDIA RTX 2080 Ti GPUs and can be finished within 4 min-

utes. We implement the training pipeline and WoS solver using the

automatic differentiation framework Jax [Bradbury et al. 2018].

7.2 Equal Time Comparison
We present qualitative results for three shapes: Sprocket, Mis-

sile [Koch et al. 2019], and Cow [Crane et al. 2013]. For each of these

shapes, we allocate 5 minutes of compute time to obtain the result.

We also report the mean square error for each frame. The results

are shown in Figure 4. Our network is more accurate than the NF
baseline, with a lower MSE compared with the reference solution.

For our hybrid solution, we set𝑚 = 1. Compared to the WoS base-

line, our network shows less noise, which is also reflected through

both the cleaner image and the lower MSE error. This result verifies

our hypothesis that our hybrid solver is able to produce less biased

results than the NF baseline and also achieves lower variance than

the WoS baseline using a similar amount of computing resources.

Note that our method performs better when the solution function

has higher spatial frequency (e.g. Missile and Cow example).

To further understand the allocation of time for our method and

the WoS baseline, we report a detailed compute time breakdown in

Figure 6. We report the amount of time it takes for both the WoS
and the hybrid model to reach an MSE error of 5e-3 at different

resolutions. We report three different resolutions: 256, 512, and 1024.

For the hybrid model, we show the breakdown of training time

and inference time. The hybrid model can outperform WoS in time

efficiency as long as there are sufficient locations whose solution

needs to be computed during inference. Its advantage is larger when

the number of testing locations is larger (e.g. 1024 × 1024). This is

because it is very fast for the hybrid method with shallow depth (e.g.

𝑚 = 1) to produce a good estimate during inference. The training

time remains unchanged regardless of the inference time resolution.

As a result, when the slice resolution is large, the hybrid model can
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Figure 4: Equal time comparison. We solve a variable coefficient screened Poisson equation (Eq 1) with different domain shapes,
including high-genus shapes (Row 2) and shapes with thin structures and sharp edges (Row 3). We sample a 512 × 512 slice
for each method and allocate 5 minutes of compute time to obtain the result. We can see that the hybrid solver can achieve
more accurate results than both the self-supervised baseline (with high bias) and the WoS baseline (with high variance). The
performance gap is larger when the PDE solution is high-frequency.

amortize the training cost, which leads to a larger performance gap

compared to the WoS baseline.

7.3 Equal Sample Analysis
Equal-time comparison can be unreliable since the compute time

also tightly depends on implementation and hardware. To further

compare the performance among these solvers, we conduct an

equal sample analysis. For each solver, we averaged the output

of 𝑘 independent samples. This averaged output is then used to

compute the MSE with the reference solution. In the left-hand side

of Figure 5, we plot the MSE versus the number of samples in log

scale. The NF baseline using self-supervised loss failed to produce

accurate results and lacks any provision to reduce its error during

inference time. This is indicated by a constant highMSE throughout

different numbers of test-time samples. This error is also visible in

the slice figure titled NF, which has different values near the ear

and the front foot of the bunny. This can be caused by the training

instability of the self-supervised loss, which requires additional

hyperparameter tuning. On the other hand, our neural field trained

with WoS supervision (Section 5.1, Ours(m=0)) has lower MSE

and better qualitative results compared to the NF baseline. The

qualitative result of Ours(m=0) is also closer to the reference.

Compared to WoS baseline, our hybrid solvers achieve lower MSE

error when the number of walks per testing location is low. But as

more walks are allowed during inference, the performance of hybrid

solvers plateaus while the WoS baseline is able to sustain the𝑂 (1/𝑁 )
convergence rate with 𝑁 being the number of independent walks.

This is expected since the hybrid solver terminates by evaluating

the neural cache 𝑢𝜃 , which is only an approximation of the actual

solution 𝑢. Overall, the result suggests that our hybrid solver has

an advantage over both the NF baseline and the WoS baseline when

computation resource is limited.

7.4 Effect of Cache Depth
Finally, we want to analyze the key hyperparameter of our hybrid

solver, the depth budget𝑚 in Eq 13. We want to study how this

hyper-parameter allows us to trade off bias and compute. To achieve

this, we first run our hybrid models but set the depth budget to

different numbers:𝑚 = 0, 1, 5. As in the previous section, we sample

10
4
independent walks for each model. To produce outputs at the

𝑘th
step, we average 𝑘 sampled walks. Each of these outputs is

compared to the reference solution to compute MSE. Figure 7 shows

a graph of the number of samples versus MSE.

First, as𝑚 increases, the curve plateaus at lower MSE. Intuitively

as𝑚 increases, the hybrid solver should behave more and more like

the WoS solver since more and more walks can terminate within

the budget, making fewer (biased) neural network queries. At the

same time, increasing𝑚 will result in more compute per walk since

the random walk might not terminate until it hits the budget. Thus

each such walk will take a longer time to finish. This suggests that



SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Li et al. 2023

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

M
S
E

#Walks

NF WoS. 2022 Ours (m=0) Ours (m=1) Ref.

Err 40.0× Err 1.0× Err 0.259× Err 0.248×

Figure 5: Equal sample convergence analysis. L: we show number of walks v.s. MSE curves. Our method achieves lower MSE
when number of walks is limited. R: a qualitative comparison of different models at 100 walks per pixel.
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Figure 6: Computational time breakdown for WoS and our
method. We report the time it took each of the methods to
reach an MSE error of less than 5e-3. Our hybrid solver is
faster than WoS when there are more test samples.

if the user desires more accurate results, they are able to achieve

this by increasing the depth of the hybrid solver.

Second, as the depth𝑚 increases, the MSE curve starts higher.

Intuitively, we can think of the hybrid solver as computing the

expectation of a function that takes a random walk 𝑥1, . . . , 𝑥𝑑 with

length 𝑚 and return a value. A larger 𝑚 means the expectation

is taken over a larger space, which might require more samples

to compute accurately. As a result, when the compute budget is

limited, it’s beneficial to use the hybrid solver with smaller𝑚.

Finally, we are able to expand the advantages of our hybrid solver

over the WoS solver at different compute budgets by considering

different values of 𝑚. For example, when we only consider the

configuration of 𝑚 = 0 and 𝑚 = 1, our hybrid solver is better

than WoS when the budget is less than about 1000 walks, shown in

the plot at the left-hand-side of Figure 7. This can be seen by the

crossing point of the m=1 and WoS curves. But when we expand the

set of hybrid solvers to include𝑚 = 0 through𝑚 = 5, our hybrid

solver outperforms WoS until about 4071 walks per sample, which

is indicated by the crossing point of m=5 and WoS.

8 CONCLUSION
In this paper, we propose to use neural fields to effectively reduce

the variance of the Walk-on-spheres Monte Carlo PDE solvers.

First, we develop a simple and effective training objective to obtain

a neural field that approximates the PDE solution. Then, it’s used

as a cache to reduce the length of random walks from the WoS

M
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Err: 0.24×
m=1

0.60×
m=5

1.00×
WoS

Err: 1.08×
m=1

0.72×
m=5
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WoS

Figure 7: L: Convergence ratewith different depths. The cross-
ing points A, B, and C show that given different compute
budgets we should choose different parameters𝑚. R: Visual-
ization at different depths at 80 and 1300 walks.

solvers. We also provide a convergence analysis of the proposed

training algorithm showing similar convergence properties to SGD.

Empirically, we show that our hybrid solver can reduce the variance

of the WoS solver when working within a limited computational

budget. It can converge to an unbiased solver as we increase the

compute budget.

Currently, our method only applies to a specific class of PDEs and

boundary conditions where there exists an unbiased Monte Carlo

solver. Applying to a broader class of recursive Monte Carlo esti-

mators is an interesting direction for future research. Our method

also requires the manual selection of certain key hyper-parameters

such as the inference depth budget. An automatic way to determine

these hyper-parameters would be helpful to make our method ap-

plicable to more examples. To scale our method to larger scenes,

we may need to efficiently train a neural field to approximate a

function within such large and complex geometry. Moreover, how

to leverage recent advances such as instant NGP [Müller et al. 2022]

to achieve PDE simulation in large scenes is also interesting. A

comprehensive convergence analysis with empirical evidence can

be beneficial for the community to better understand the algorithm.
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